DOE to Invest $60 Million in Concentrating Solar Power Technologies

October 26, 2011

Photo of a field of reflective panels and a solar tower.

The SunShot Initiative is boosting concentrating solar power, including tower technology like this type which will be used in the Ivanpah solar project in California.
Credit: BrightSource Energy

DOE announced on October 25 its $60 million investment over three years for applied scientific research to advance cutting-edge concentrating solar power (CSP) technologies. The effort is part of DOE's SunShot Initiative, a collaborative national effort to reduce the cost of solar energy by 75% by the end of the decade. CSP technologies use mirrors to reflect and concentrate the sun's heat, which can then be used to produce electricity.

The SunShot Initiative investments in solar energy research will encourage rapid, widespread adoption of solar energy systems across the country, help the U.S. solar power industry overcome technical barriers and reduce costs, boost U.S. competitiveness in the worldwide market for solar technologies, and provide support for clean energy jobs for years to come. Through this solicitation, DOE seeks to support research into technologies that have the potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial CSP systems. DOE expects to fund approximately 20 to 22 projects, and encourages industry, universities, and its national laboratories to apply. Pre-applications are due by November 22, and full applications are due by February 7, 2012.

This SunShot CSP opportunity seeks to develop innovative concepts that could lead to performance breakthroughs like improving efficiency and temperature ranges, while demonstrating new approaches in the design of collectors, receivers, and power-cycle equipment used in CSP systems. Each of these subsystems is critical to CSP operation: the collectors collect and concentrate the sun's energy onto the receiver; the receiver accepts and transfers the heat energy to the power cycle; and the power cycle converts the heat energy into electricity. Developing low-cost collectors, high-temperature receivers, and high-efficiency power cycles should lead to subsequent system integration, engineering scale-up, and eventual commercial production for clean electricity generation applications. See the DOE press release, the Funding Opportunity announcement, and the SunShot Initiative website.