<% '============= Create and Open Database Connection ============= 'OPEN THE DATABASE If blnConnectToDB Then dim blnDBconnectionDown blnDBconnectionDown = false Err.Clear on error resume next set dbConn = Server.CreateObject("ADODB.Connection") 'Open the Connnection 'dbConn.Open Application("dbConn_ConnectionString") dbConn.Open "DSN=PostgreSQL30", "eere_news", "33reNews" ''New Error trapping. KC added 2/23/2012 If Err.Number <> 0 Then ''Response.Write (Err.Description& "

") dbConn.Close Set dbConn = nothing blnDBconnectionDown = true End If On Error GoTo 0 ''error trapping not working here KC removed 2/23/2012 ''tmpDBErrorNativeError = 0 '' For Each dbErr In dbConn.Errors '' strErrMsg = strErrMsg & _ '' "Source: " & dbErr.Source & vbCrLF & _ '' "Description: " & dbErr.Description & vbCrLF & _ '' "SQL State: " & dbErr.SQLState & vbCrLF & _ '' "NativeError: " & dbErr.NativeError & vbCrLF & _ '' "Number: " & dbErr.Number & vbCrLF & vbCrLF '' tmpDBErrorNativeError = dbErr.NativeError '' Next '' If (dbConn.Errors.Count > 0) AND (tmpDBErrorNativeError <> 5703) Then '' dbConn.Close '' Set dbConn = nothing '' blnDBconnectionDown = true '' Response.write(strErrMsg) '' Response.end '' End If dim arrErrors() Redim arrErrors(2,0) End If '============================================================== Public Function GetRS2(myCommand) On Error GoTo 0 'objConn: local connection object 'objRS: local recordset object 'objComm: command object passed in to the function Dim objConn, objRS, blnErrorLogged, objComm 'Create the command object Set objComm = Server.CreateObject("ADODB.Command") Set objComm = myCommand 'Create the connection object Set objConn = Server.CreateObject("ADODB.Connection") 'Open the connection object objConn.Open "DSN=PostgreSQL30", "eere_news", "33reNews" 'Set the active connection objComm.ActiveConnection = objConn 'Create the recordset object Set objRS = Server.CreateObject("ADODB.Recordset") 'Set the cursor location for disconnected recordsets 'objRS.CursorLocation = adUseClient 'Turn on error handling for just a second ' On Error Resume Next 'Open the recordset 'objRS.Open SQL, objConn, adOpenStatic, adLockOptimistic Set objRS = objComm.Execute 'Response.Write "State = " & objRS.State & "
" 'objRS.MoveLast 'objRS.MoveFirst 'Response.Write "Count = " & objRS.RecordCount & "
" 'Response.End 'Check for an error ' If Err.Number <> 0 Then ' Response.Write "Database Error Occured

" ' Response.Write "Error #" & Err.Number & "
" ' Response.Write Err.Description & "

" ' Response.Write "SQL:
" ' Response.Write SQL ' Response.End ' End If 'Turn off error handling ' On Error GoTo 0 'Disconnect the recordset 'Set objComm.ActiveConnection = Nothing 'Close the connection 'objConn.Close 'Set the connection to Nothing 'Set objConn = Nothing 'Set the Command to Nothing 'Set objComm = Nothing 'Return the recordset Set GetRS2 = objRS On Error Resume Next End Function '=============================================================== Function GetRS(sSQL) 'Declarations dim rs 'Create Recordset Object set rs = Server.CreateObject("ADODB.Recordset") If blnConnectToDB Then 'Open Recordset based on SQL rs.Open sSQL, dbConn, 1, 3, 1 End If 'Return Recordset set GetRs = rs End Function '=============================================================== Function ExecSQL(sSQL) 'Open the Command Object dim lRecordsAffected dbConn.Execute sSQL, lRecordsAffected 'Return the Records Affected ExecSQL = lRecordsAffected End Function '======================================================================== Function sendEmail(strFrom,strTo,strSubject,strMessage) Dim sch ' Schema sch = "http://schemas.microsoft.com/cdo/configuration/" Set cdoConfig = CreateObject("CDO.Configuration") With cdoConfig.Fields .Item(sch & "sendusing") = 2 .Item(sch & "smtpserver") = "mxrelay.doe.gov" .update End With Set cdoMessage = CreateObject("CDO.Message") With cdoMessage Set .Configuration = cdoConfig .From = strFrom .To = strTo .Subject = strSubject .TextBody = strMessage .Send End With Set cdoMessage = Nothing Set cdoConfig = Nothing End Function Function removeBadChars(tmpString) tmpString = Replace(tmpString , "<", "") tmpString = Replace(tmpString , ">", "") tmpString = Replace(tmpString , "'", "") tmpString = Replace(tmpString , """", "") tmpString = Replace(tmpString , ";", "") tmpString = Replace(tmpString , "(", "") tmpString = Replace(tmpString , ")", "") removeBadChars = tmpString End Function %> <% 'If there is a mobile version of this site, check the user_agent, and forward to 'the mobile version of the site (unless cookie or querystring var is set) if "true" = "true" then tmpSeeFullPage = Mid(Request.Querystring("m"),1,1) if ((isMobile) and (tmpSeeFullPage <> "1")) then tmpMobileURL = Request.servervariables("HTTP_URL") tmpMobileFileName = mid(tmpMobileURL, InStrRev(tmpMobileURL, "/")+1) tmpMobileURL = Left(tmpMobileURL, InStrRev(tmpMobileURL, "/")) tmpMobileURL = tmpMobileURL & "m/" & tmpMobileFileName Response.Clear Response.Redirect(tmpMobileURL) end if end if %>

<% ''This code is strictly when a user clicks on a left nav and needs to be forwarded to another site/program/office if ("" <> "") then Response.Clear Response.Redirect ("") end if %>

Covered Product Category: Commercial Boiler

  • Did you know? - Modular Is Efficient
    It is more efficient to operate several small, modular boilers than a single large boiler.

  • Did you know? - Condensing Boilers Are 10% More Efficient
    Condensing boilers utilize some of the latent heat component of a fuel source in addition to most of the sensible. By doing so, the efficiency of these boilers can be up to 10% greater than non-condensing models.

  • Did you know? - What's Covered
    All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies.

  • 3
    2
    1

Updated December 2011

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

This product category overview covers the following:

Meeting Energy Efficiency Requirements for Commercial Boilers

Table 1 displays the FEMP-designated minimum efficiency requirements for commercial boilers. All Federal purchases must meet or exceed the thermal efficiencies listed in table 1 below. These efficiency levels can be voluntarily adopted by non-Federal organizations, institutions, and purchasers.

Table 1. FEMP-Designated Efficiency Requirements for Commercial Boilers
(300,000–10,000,000 Btu/hour Rated Capacity)
Boiler Type (Fuel) Thermal Efficiency*
Hot Water, Condensing (Oil or Gas) 94% or greater
Hot Water, Non-Condensing (Oil) 85% or greater
Hot Water, Non-Condensing (Gas) 84% or greater
Steam (Oil) 83% or greater
Steam (Gas) 80% or greater

* Based on Hydronics Institute, Method to Determine Efficiency of Commercial Space Heating Boilers (HI BTS-2000, Rev06.07)

Back to top

Defining the Product Category

These efficiency requirements and the associated guidance apply to low-pressure hot water or steam boilers used in commercial space heating applications (using either oil or gas) with a rated capacity between 300,000 and 10,000,000 Btu/hour. High-pressure boilers (i.e., those used in industrial and cogeneration applications) and residential boilers (i.e., those with a capacity less than 300,000 Btu/hour) are excluded. Condensing boilers are inherently more efficient than non-condensing boilers and should be procured whenever appropriate.

Back to top

Choosing the Right Boiler—Condensing or Non-Condensing?

Due to their high efficiencies, condensing boilers should be purchased whenever appropriate for the application. Non-condensing boilers are inherently less efficient than condensing models and should only be used in applications where condensing boilers will not work properly. FEMP-designated efficiency requirements for both condensing and non-condensing boilers can be found in table 1.

Condensing boilers can typically be used in new construction or renovations that replace the heat distribution systems. Condensing boilers may also be appropriate in other renovations or replacement scenarios, but in these cases, detailed engineering analyses should be used to determine if the heat distribution systems can function properly1. If an engineering analysis determines that a heat distribution system is incompatible with condensing boiler operation, an efficient non-condensing model should be used.

Back to top

Determining Cost-Effectiveness

FEMP has calculated that a product meeting FEMP-designated efficiency requirements saves money in lifetime energy costs if priced no more than $46,618 above the less efficient alternative. The most efficient level saves the average user more money: $53,247 in lifetime energy costs. The complete cost-effectiveness example and associated assumptions are provided in table 2 and can also be reproduced in FEMP's Energy Savings Calculator for Commercial Boilers.

HINT: Use FEMP's dynamic calculator to calculate savings for your own scenario or to view the full results for this default case.
Table 2. Estimated Lifetime Energy Cost Savings for a Gas-Fired, Hot Water Boiler with a Capacity of 1,000,000 Btu/hour
Base Model FEMP Min.
Efficiency
Requirement
Best
Available
Your
Choice
Lifetime Energy
Cost Savings
$0 $46,618 $53,247 $46,618
Thermal
Efficiency (%)
80 94 96 94
FEMP's Energy Savings Calculator for Commercial Boilers

The performance of the base model in table 2 is based on ASHRAE 90.1-2007 and the FEMP-designated minimum efficiency requirement is for a condensing-model boiler. The performance of the best available model is from the AHRI Directory of Certified Products. To view the full results and assumptions for this scenario, use FEMP's commercial boiler calculator's default settings (choose "new," "water," and "gas").

Exceptions

Products meeting FEMP-designated efficiency requirements or ENERGY STAR performance specifications may not be life cycle cost-effective in certain low-use applications, such as when a device is being purchased for backup purposes and will remain in off mode for most of its useful life. For most other average or high-use applications, purchasers will find that energy-efficient products have the lowest life cycle cost.

 

Back to top

Complying with Contracting Requirements

These requirements apply to all forms of procurement, including construction guide specifications and project specifications; renovation, repair, maintenance, and energy service contracts; lease agreements; acquisitions made using purchase cards; and solicitations for offers. Energy efficiency requirements should be included in both the evaluation criteria of solicitations and the evaluations of solicitation responses.

Federal Acquisition Regulation (FAR) Part 23.206 requires Federal agencies to insert the clause at FAR section 52.223-15 in solicitations and contracts that deliver, acquire, furnish, or specify energy-consuming products. FEMP recommends that agencies incorporate efficiency requirements into both the technical specification and evaluation sections of solicitations. Agencies may claim an exception to these requirements through a written finding that no ENERGY STAR–qualified product or FEMP-designated product category is available to meet the functional requirements, or that no such product is life cycle cost-effective for the specific application. Additional information on Federal requirements is available.

Back to top

Buyer Tips: Choosing Efficient Products

A boiler system should be capable of meeting the building's peak heating demand and also operate efficiently at part-load conditions. Selecting the right system and properly sizing a boiler requires knowledge of both the peak demand and load profile. If building loads are highly variable, as is common in commercial buildings, designers should consider installing multiple small (modular) boilers in addition to boilers that have modulating burners. In periods of low demand, some of the boilers can be isolated from the other boilers and not incur any standby losses or cycling losses. They can also be automatically staged such that each boiler is running at its most efficient operating point without incurring additional cycling.

For guidance on boiler rightsizing and quality installation, consult the American National Standards Institute/Air Conditioning Contractors of America Standard 5: HVAC Quality Installations Specification (ANSI/ACCA 5 QI 2010).

Federal procurement officers and buyers should consider specifying boilers with the following features:

  • Water temperature reset—Hot water boilers should have the capability for water temperature reset. This is typically based on the outdoor air temperature or the return water temperature. When the heating load is reduced, the supply water is set to a lower temperature.

  • Modulating burners—It is recommended that boilers have the capability to vary their heating output by modulating the burner. Most of the time boilers operate at part load. To prevent excessive cycling and the losses that accompany them, specify boilers that have modulating capability. A minimum turndown ratio of 4:1 is recommended for gas/water boilers. This is particularly important in condensing boilers that run more efficiently at part load.

  • Low mass—Because boilers cycle on and off and it takes time to bring a high mass boiler up to operating temperature, using low-mass boilers will reduce energy consumption. In addition, some boilers can be brought online quickly, therefore avoiding the need to keep a boiler on hot standby.

  • Remote monitoring capability—Remote monitoring capability is useful to manage boiler operation and to detect any malfunctions in a timely manner.

  • Precise air-fuel ratio control—It is important to keep the air-fuel ratio at optimum levels at part-load operation as well as full-load operation. This is better accomplished by using sensor-driven servos rather than a mechanical linkage (e.g., jack shaft) between the gas input and the blower damper. Oxygen trim systems should be used on larger boilers. Oxygen trim systems monitor the oxygen in the flue gas and adjust the air-fuel ratio for optimum combustion efficiency.

  • Optimum start control—An optimum start control fires up a boiler so that it fires just in time to heat up a building before it is occupied in the morning.

  • Other enhancements—Other options to increase efficiency of the heating system include reusing heat from blow down and return condensate for steam boilers, using electronic ignition devices, and increasing boiler and piping insulation.

Back to top

User Tips: Using Products More Efficiently

Several diagnostic and maintenance procedures are important to maintain efficient boiler operation. Flue gas temperature monitoring is useful in detecting efficiency and operating problems. Maintaining steady excess air levels (with an oxygen trim sensor) ensures that burners will mix air and fuel properly. Low water levels can damage boilers so water levels should be checked frequently, as part of a regular maintenance program. Water treatment can prolong boiler life as well as increase its efficiency. Waterside and fireside surfaces should be cleaned annually.

The Boiler Efficiency Institute provides maintenance and operation manuals for boilers and boiler control systems. To encourage quality operations and maintenance, building engineers can also refer to ASHRAE/ACCA Standard 180: Standard Practice for Inspection and Maintenance of Commercial Building HVAC Systems. In addition, the FEMP O&M Best Practices Guide, Release 3.0, Chapter 9 provides valuable information on operation and maintenance of boiler systems.

Back to top

Finding More Information

The following resources provide additional information regarding commercial boilers:

For more information about energy-efficient products, including publications, training, related links, and points of contact, visit the Resources Page.

Back to top

1 If conducting a detailed engineering analysis, consider whether the system can maintain the supply and return water temperatures required for efficient operation of condensing boilers, while still functioning properly.