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DOE Hydrogen Quality Working Group (H2QWG)
Objectives 

�	 Develop a process to determine hydrogen quality requirements for fuel 
cell vehicles based on life-cycle costs 
–	 evaluate impact of fuel quality requirements on hydrogen production 

and purification costs 
–	 evaluate impact of contaminants on fuel cell performance, durability, 

and related life-cycle costs 

�	 Identify information gaps and the R&D needed to fill those gaps 
–	 recommend approaches to funding and conducting the 


needed R&D
 

H2QWG has prepared a draft Roadmap and submitted it to DOE 
for review and comment 
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The H2QWG focus is on the near- to mid-term (to 2015) 

�  Production: distributed (forecourt) production 
– reforming of natural gas (autothermal & steam reforming) 
– reforming of renewable fuels, e.g., ethanol (i.e., E-95 & E-85) 
– electrolysis (alkaline and PEM electrolyzers) 

�  Purification: 
– pressure-swing adsorption, PSA (may be aided by TSA) 
– hydrogen-permeable membrane separators 

�  Use in fuel cell systems (no storage effects): 
– performance / cost / durability impact of 

•  electrochemically active contaminants 
•  inert contaminants 

�  Analysis and quality verification 
– available analytical technologies (mostly research laboratory) 
– standardized (commercially accepted) technologies 
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Draft Roadmap 
 

Summary findings (preliminary) 
 

�  PSA can achieve most of the H2 impurity limits proposed by SAE / 


ISO, but it may add 5-20% to the cost of H2
 

�  PSA is ineffective for removing helium 

� There are some contaminants for which PSA’s effectiveness has not 
been reported (e.g., formic acid) 

� The proposed levels for CO2, O2, and inert gases may be overly 


restrictive (based only on their effects on fuel cell performance)
 

� Testing and analysis may be a very significant cost factor, both for 


certification and for control of hydrogen quality
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Draft Roadmap 
Recommendations (preliminary) 

�  Quantify the cost and performance of PSA vs. H2 quality to determine life-
cycle costs 

�  Quantify the effects of specific contaminants on cost and performance of 
fuel cells, and the costs of overcoming performance degradation 

� Develop low-cost methods for gas sampling and analysis for certification 
and on-line quality control (and fuel quality regulation enforcement) 
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Modeling and experimental data are being used to assess 
the impact of specific fuel impurities on life-cycle costs 

� Study individual contaminants 
�  Evaluate potentially different effects for different production / purification 

and fuel cell operating conditions 
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The H2A model is the basis for the cost of hydrogen 

�	 Based on options / assumptions available in H2A 

� 	 The current H2A model does not reflect sensitivity to hydrogen quality 
–	 Add effects of hydrogen recovery and process efficiencies 

�	 Component models are being developed to support the H2A 
–	 Argonne is modeling a steam reformer + PSA process 
–	 Results will be incorporated into H2A 

• Look-up tables 
•  Interface with component module 

� 	 End Result 

–	 Cost of hydrogen (trend) = f (Process pathway, conditions, efficiency, 
contaminant level, etc.) 
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Typical reformate compositions from natural gas and
ethanol are similar 

Product gas composition from steam reforming 
Species Natural Gas Ethanol 

H2 75–80% 70–75% 
CO2 15–18% 22–25% 
CO 0.1–4% 0.1–4% 
CH4 0.5–3% 0.5–3% 

Non-CH4 HCs 0.5% 0.5% 
He <500 ppm trace 
N2 100 ppm 100 ppm 
Ar 5 ppm 5 ppm 

H2S 5 ppm 1 ppm 
O2 trace trace 

NH3 trace trace 
Reformate from ethanol may also have traces of organic acids and 
aldehydes 
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Fuel cell stack model: 


Effects of fuel impurities on fuel cell performance 
 

� Current generation and transport in catalyst layers 
�  Transport of ions across PFSA membrane 
�  Kinetics of HOR and ORR over Pt catalyst 
�  Multi-species diffusion in porous media 
�  Water transport across PFSA membranes 
�  Capillary transport of water across GDL and catalyst 
�  2-phase flow in gas channels 

�  Once-through cathode 
stream 
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Mechanistic models of electrocatalyst poisoning 

�  Hydrogen Oxidation Reaction 
– H2 + 2M

 2M-H 
(Dissociative Adsorption) 

– M-H M + H+ + e- (Electrochemical Oxidation) 
�  CO Poisoning of Pt 

– CO + 2M M2-CO (Associative Adsorption on Bridge Sites) 
– CO2 + 2M-H M2-CO + H2O (Reverse Water-Gas Shift) 
– M2-CO + H2O 2M + CO2 + 2H+ + 2e- (Electrochemical Oxidation) 

� Reactions with Oxygen 
– M2-CO + ½ O2 2M + CO2 (CO Oxidation) 
– 2M-H + ½ O2 2M + H2O (H2 Oxidation) 

�  H2S Poisoning of  Pt 
– M + H2S M-H2S (Reversible Associative Adsorption) 
– M-H2S + M-H M2S + 3/2H2 (Irreversible Dissociation) 
– M2S + 2H2O 2M + SO2 + 4H+ + 4e- (Electrochemical Oxidation) 

10 



 

CO poisoning: 


Effect of Pt loading on fuel cell performance degradation 
 
Pt Loading 
CO, ppm 
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CO2 poisoning: 


Effect of Pt loading on fuel cell performance degradation 
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0.1 5.7 0.7 4.2 0.4 
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Buildup of CO and CO2 in the recirculating anode gas 

7 
 � Fraction of CO at stack inlet that is 
No CO2 in Fuel H2 

Anode Pt Loading: 0.4 mg/cm2 
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– <50% for 0.1-ppm CO in fuel H2
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– ~20% for 1-ppm CO in fuel H2
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H2S poisoning: 


Transient poisoning and recovery 
 

� Data from Mohtadi, PhD thesis, USC (2004) 
�  Kinetic constants for H2S reactions derived from measured transient poisoning 

and recovery response of current density 
�  Partial recovery in neat H2, progressive degradation over five cycles 
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�  0.4 mg/cm2 Pt on cathode 
0.2 �  Poisoned by 50-ppm H2S for 3.8 h 

�  Recovery in neat H2 for 24 h 
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Effect of H2S dosage on cell voltage decline 
 

� H2S concentration needs to be <1 ppb to limit decrease in cell voltage at 
1.05 A/cm2 to 10 mV after 5000 h 
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NH3 poisoning: 


Transient poisoning and recovery 
 

� Data from Soto et. al., Electrochemical and Solid-State Letters, 6 (7) A133­
A135, 2003 

�  Kinetic constants for NH3 uptake reactions derived from measured transient 
poisoning and recovery response of cell voltage 

0.8 

�  Gore PRIMEA MEA Series 5621 
0.7 �  35 μm membrane 

� 0.45 mg/cm2 Pt-Ru alloy on anode 
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�  0.6 mg/cm2 Pt on cathode 
0.5 �  Poisoned by 200-ppm NH3 for 10 h 

� Recovery with neat H2 for 10 h 
0.4 � Constant current density: 0.6 A/cm2 

�  70oC, 101 kPa
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Effect of NH3 buildup on stack efficiency 
 

NH3 in Fuel H2 Recycle Ratio Purge Δη  

0.5 ppm 50 ~2% 1.6% 
1 ppm 25 ~4% 2.9% 
2 ppm 12 ~7% 4.7% 
5 ppm 6 ~15% 8.1% 
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Held a hydrogen quality modeling workshop at Argonne
on August 30-31, 2007 

�	 Purpose: to describe models being developed to assess impurity effects on 
fuel cell performance and durability (and hydrogen purification by PSA) 

– 	 Describe the significant components and processes in the models 

–	 Provide details of input parameters 
• Sensitivity of output results to input parameters 

– 	 Define data needed to validate / refine models 

–	 Develop mutual understanding between modelers and experimentalists 
on what is achievable 

–	 Identify limitations / capabilities of modeling and experimentation 
• How to reduce limitations, increase capabilities 

– 	 Develop specific means for maintaining continuing interactions among 
this research community 
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Status of impurities effects modeling and future work 
 
�	 We have developed a framework for modeling the effects of impurities 

(site blockage, ion exchange, HOR and ORR reaction kinetics for hydrogen 
oxidation and oxygen reduction, etc.) 

–	 Quantitatively predict effects of impurities, not just to explain 


experimental observations
 

–	 Assess effects of simultaneous presence of multiple impurities 

–	 Simulate steady-state and dynamic effects 

–	 Modify / update mechanisms as additional data become available 

–	 Extend models to other fuel impurities 

–	 Extend models to air impurities 
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Summary
 

�	 The H2QWG has prepared and submitted to DOE a draft roadmap for 
continuing activities to address issues of hydrogen quality for automotive 
fuel cell systems 

� 	 DOE contaminant effects projects are being complemented by the fuel 
cell system modeling work at Argonne 

� 	 There is close interaction between these activities and the related work of 
SAE and ISO by participation in Working Group meetings and workshops 
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